ALCOHOL AND WATER DON’T MIX

VESSEL STEAMING...
Crew sleeping

AVOID ALCOHOL
Contents

Vessel steaming … crew sleeping
Total loss, but a lucky escape for three on board a fishing vessel

No communications, no chance
On man died and four people spent a night in the cold with no way to call for help

Exhausted kayaker drowns
A kayaker struggled in the water with no lifejacket and no means to call for help

Spinning out of control
Two women tethered to a parasailing boat spun in the air after it capsized

Watertight door crushes engineer
A chief engineer was killed by a watertight door during a drill

Crash ends thrilling ride
 Twelve passengers were injured when a jet boat hit a rock face

Safety feature: Alcohol and water don’t mix

Maritime fatality and accident statistics

Introduction

Guest editorial:
Safety messages slowly sinking in

News & updates:
New-look website coming soon
Kia ora and welcome to the first issue of LOOKOUT! for 2012 – my first as Director of Maritime New Zealand (MNZ).

This issue looks back at recreational and commercial accident and fatality statistics over the past 10 years. Many of these accidents and fatalities have been covered as stories in LOOKOUT! and although we are doing better in some of our key safety areas, such as the carriage of lifejackets, the statistics show we’ve still got a long way to go.

MNZ Maritime Safety Inspector Alistair Thomson, whose work is focused on recreational boating, brings us this LOOKOUT!’s guest editorial, with some observations about what’s been happening out on the water over summer and with our partners on the National Pleasure Boat Safety Forum.

The cover story, “Vessel steaming … crew sleeping”, shows what can go wrong when good watchkeeping practices aren’t followed. In this case, the fishing vessel was a total loss, but fortunately all those on board lived to tell the tale. The skipper, who wasn’t successfully woken for his turn on watch, had consumed alcohol before departing and failed the youth alcohol limit when breath-tested after the grounding.

Drinking behaviour on the water is also the subject of the safety feature, “Alcohol and water don’t mix”, and is followed by a review of some of the alcohol-related accidents from previous issues of LOOKOUT! – several of which involve fatalities. “Avoid alcohol” is one of MNZ’s five key safety messages, but it’s an all-too-common feature of boating accidents and fatalities.

While alcohol wasn’t an issue in the story “No communications, no chance”, two of our other key safety factors were. Those on board weren’t wearing lifejackets when their boat suddenly capsized. They managed to recover some of the lifejackets they carried, but the man who died hadn’t been able to get his lifejacket done up correctly. The group also weren’t carrying adequate emergency communications that worked when wet, and couldn’t call for help.

Lifejackets and communications were also factors in another fatality, when two kayakers were returning from a day trip to a nearby island and got tipped out of their boats. Both struggled in the conditions, but only one made it back to shore to raise the alarm.

Accidents involving commercial tourist operations – one jet boating and one parasailing – also feature, with lessons to be learnt from each.

We’ve had some really positive feedback about LOOKOUT! from readers, and also through last year’s customer satisfaction survey. We have shared that with the people who are involved in helping put LOOKOUT! together. It’s encouraging to know the safety messages are getting through.

Please pass this LOOKOUT! on to friends, family or crew, and encourage them to sign up to receive print or email copies.

Keith Manch
Director of Maritime New Zealand
Over summer, boating safety organisations have been out and about, observing behaviour at boat ramps and on the water, handing out information, offering advice, and undertaking surveys to help build a picture of our current recreational boating environment.

Encouragingly, feedback from the agencies involved – which include MNZ’s network of volunteer Safe Boating Advisors, Coastguard volunteers, regional council harbourmasters and their officers, and the Coastguard air patrol – indicates that, overall, things are generally positive.

On the plus side, the agencies are reporting that more boaties are carrying lifejackets and communications equipment, lifejacket wearing is slowly trending up, and we’re seeing behavioural change in action.

Of more concern, though, is that fatalities are still reasonably high – even when balanced against an ever-growing increase in boat ownership and activity. There were 20 recreational boating fatalities in 2011, compared with 14 in 2010 and 24 in 2009. Already in 2012, there have been three deaths in January alone. If we look back over the past five years, we’re averaging about 17 recreational fatalities per year. While our rate per 100,000 boats is no worse than some Australian jurisdictions that have compulsory licensing, we can do better!

Turning to the non-fatal incident reports that are coming in, we are also observing some common trends in the types of incidents reported … grounding, collision, near miss, too fast, too close and capsize.

However, against this background, there is evidence that people are responding to our safety messages. Here’s one with a happy ending:

“Just left the beach and started trolling-harling, with the rod in the rod holder. I was drifting using the offshore wind to provide trolling speed when the rod bent double – I had caught a rock. It was pulled out of the rod holder but I could see it floating so rowed towards it. When I got beside the floating rod and leaned over to pick it up the boat flipped and I was suddenly in the water. Using my waterproof hand-held VHF radio attached to my lifejacket I sent out a mayday call. I was rescued 20 minutes later.”

All of this information presents the National Pleasure Boat Safety Forum (NPBSF) – made up of 16 water safety organisations that are responsible for New Zealand’s Boating Safety Strategy – with some interesting challenges and opportunities. For example, where and how do we intervene on the accident continuum to prevent a non-injury near-miss from becoming an injury or collision? Or, worse still, a tragic and avoidable loss of life?

This question was being posed long before my arrival at MNZ and I’ve been lucky enough to sit at the forum table where these issues are debated and recommendations made.

Maritime Rule 91 made it compulsory for people to carry lifejackets, and successive media campaigns have nudged the boating public towards carrying and wearing lifejackets and carrying waterproof communications equipment. This is an excellent example of safety messages slowly sinking in – but there’s more work to be done.
encouraging behaviour change in boaties in an area of risk that is supported by clear evidence.

At the end of the day though, it’s pretty simple – if you find yourself in the water as the result of an unfortunate set of circumstances, and you can’t float or communicate, then your chances of coming home alive are fairly limited. It doesn’t take a massive change in behaviour to give you (and your nearest and dearest) the best possible chance of coming home in one piece. It’s about basic risk management.

In line with its evidence-based approach to boating safety, the forum recently commissioned some research into boating behaviours and attitudes towards lifejackets and safety equipment for males over 40, who are over-represented in fatality statistics. The results were revealing.

The research told us that when we go boating it’s about shared experiences, conviviality, thinking with the heart and enjoying life. When the research subjects were asked about safety and lifejackets, themes like control and security were evident. Lifejackets and safety equipment were about thinking with the head and fearing the worst. The ongoing challenge for groups like the forum is to find a way to make lifejackets and safety equipment part of the ‘culture’ of boating, in the same way that putting on your seatbelt or maintaining a safe speed are accepted parts of driving on the road.

By now many of you will have seen our latest television commercial “Don’t be a clown. Wear a lifejacket.” The commercial uses humour to encourage skippers and crew to take responsibility for safety. We’ve had plenty of positive feedback about the commercial and even when the feedback has been less positive, it shows that people are talking about the lifejacket issue.

The forum’s Boating Safety Strategy is coming up for review this year, a process that will analyse the 83 recreational boating fatalities that have occurred since 2007. This will provide the opportunity to review again the common causal factors involved in boating accidents and fatalities – which previously have included lack of lifejackets, inability to communicate distress, boating in bad weather and excessive alcohol consumption.

The forum also routinely reviews the issue of licensing and registration of recreational boaties and boats. While on the face of it, the argument for licensing in particular appears attractive, the solution to actually reducing accidents and fatalities is far more simple. For example, if more people followed a few basic seamanship principles, such as wearing lifejackets and keeping a good lookout, we’d probably halve the number of recreational fatalities almost straight away.

It is against this background that the members of the forum are always looking for ways to work together better, to be more efficient and to spend the limited funding we have more effectively.

Through a mix of education, legislation and targeted enforcement, we’re making gains in a number of areas, with forum member organisations committed to helping reduce recreational boating accidents and fatalities.

Organisations like the Coastguard Boating Education Service and Yachting New Zealand, for example, are delivering a range of excellent practical and theory-based courses to New Zealand boaties, and are always looking at ways to get greater participation in boating education.

Regional council harbourmasters are undertaking education and enforcement action out on the water. We’ve seen a significant increase in enforcement action this summer – an essential tool for promoting better behaviour.

Water Safety New Zealand has incorporated agreed sector-wide integrated messaging into its regional workshops and its nationwide swim-to-survive programmes, as well as its very successful Māori, Asian and Pacific Island water safety strategies.

The Accident Compensation Corporation has delivered award-winning boating safety programmes into Polynesian communities in Auckland, followed by expansion into the Wellington region.

And Coastguard New Zealand, one of the most visible organisations out on the water, is leading by example and responding to calls for help and communicating the safe boating message at every opportunity.

I’m sure I’m not alone in saying that a major contributing factor to seeing a further reduction in accidents and fatalities, will be if all organisations keep ‘steering the boat in the same direction’ and communicate the integrated safety messages. We all know them: be a responsible skipper, wear lifejackets, carry communications equipment, check the marine weather and avoid alcohol.
Vessel steaming ... crew sleeping

This fishing vessel rolled to port and capsized. The wheelhouse disintegrated on the rocks almost immediately. Photos: Hunter Marine Surveying
A fishing vessel steamed towards rocks while all three crew on board slept. The men were oblivious to their plight until one of them was woken by water dripping onto his feet.

The men were nearing the end of a three-day long-line fishing trip in the 12.5 metre vessel. The skipper had set the heading on autopilot and left the remaining two crew members at the helm while he headed to the forecastle to sleep. He asked to be woken after about an hour and a half. The two crew remained on watch and made dinner as the vessel steamed on in relatively calm seas.

As the vessel neared its next waypoint, one of the two crew headed off to his berth in the forecastle. The other crew member remained on watch, but soon decided to wake the skipper and get some sleep himself. He headed to the forecastle and shook the skipper to wake him. Believing the skipper was getting up, the crew member lay down and went to sleep.

All three men were now asleep, with the vessel steaming towards rocks on autopilot. They slept until one of them was woken by water dripping onto his bunk. Realising something was wrong, the two crew members clambered towards the wheelhouse just as the vessel rolled flat onto its port side. It righted itself, and one of the crew pulled the throttle back and took it out of gear just before it started to roll to port again. This time it continued to roll, and capsized. With the vessel upside down, the wheelhouse disintegrated on the rocks almost immediately.

The two crew members were by now both in the engine room, which was filling with water. One was sucked out of the hull by the action of the overhead waves, and the other decided to dive beneath the water and swim out of the hull.

The two men were separated, but both managed to struggle about 100 metres through the surging waves to shore. They had seen no sign of the skipper and feared him lost.

Once on shore, they saw a red light and sound flashing in the water and managed to fish out the vessel’s 406MHz distress beacon. They took it with them to find shelter in some flax bushes above the high water mark, and soon fell asleep.

They were woken by the distant light and sound of a helicopter, but by now the beacon’s light had stopped flashing, and the helicopter was not heading towards them. They switched it on and the rescue helicopter was soon overhead.

About this time, the skipper says he remembers suddenly finding himself in chest-deep water in the vessel’s forecastle, but could not remember what had happened after the vessel struck rocks. He made his way out and swam towards the lights of the helicopter. The trio were all safely rescued, but the vessel was a total loss.

The rescue helicopter located the men using the signal from their 406MHz distress beacon.

LOOKOUT!POINTS

- The skipper was woken to take over the watch, but he did not get out of bed and soon fell back to sleep. The crew member who had completed his watch did not wait to ensure the skipper was fully awake before heading to bed himself.

 Good watchkeeping practice would have been to ensure that the replacement watch was fully awake and had been briefed on the vessel’s course, position and any other relevant matters relating to safe navigation of the vessel.

- The vessel’s standing orders required the skipper to ensure the watchkeeping alarm was turned on at all times, and to take the key with him while the crew were on watch.

 The vessel’s distress beacon had self-activated once in water. After a period of time out of water on shore, it had turned itself off. Be aware that a self-activated distress beacon must also be switched on manually to ensure it transmits a continuous signal.

- Had he done so, the alarm would have sounded, waking at least one of the crew.

- The skipper said he had consumed alcohol before departing. When voluntarily breath tested by Police after he was rescued, he failed the limit required for a youth to drive a vehicle.
Four men and a 13-year-old boy struggled against cold, choppy seas to reach shore after their boat capsized. As they fought for their lives, no one on shore had any inkling that they were in danger and their attempts to raise the alarm failed.

The group had set out for an afternoon’s fishing, in an aluminium boat. No one wore a lifejacket, although there were six carried on board. The boat was travelling at speed, and up on the plane when the motor suddenly stopped. As the boat dropped off, its wake flooded over the starboard quarter, causing it to roll to starboard and capsize. All five on board were spilled into the sea.

The capsize was totally unexpected. The men tried unsuccessfully to right the hull, and to make a 111 cellphone call, but could not get through due to poor coverage.

They managed to set off a smoke flare, but people on a nearby yacht did not appear to see it, and others on shore who saw it did not raise the alarm. One of the men sent his partner a text message, but she didn’t take it seriously.

One of the men managed to dive under the boat and pull out three lifejackets, which were divvied out to those who needed them most. The group decided to try to make shore, and started swimming towards a group of islands about 2 kilometres away.

By now the wind had picked up and a slight chop had developed. The party was separated into two groups, who were soon unable to see each other in the choppy conditions.

The two groups continued their struggle towards the islands for about three hours. One man towed his companion as best he could for some way, but eventually the companion was lost. The man managed to reach one of the islands, and spent a freezing wet night alone, thinking he was the only one who had survived.

The next morning he saw that the boy and the other two men had made it to an adjacent island, and at low tide he was able to pick his way over a reef to join them.

About mid-morning, the wife of one of the men started to think something was wrong and raised the alarm. The group were found by a rescue helicopter soon after. They were extremely hypothermic, but eventually recovered in hospital.

An extensive air and sea search failed to find the missing man. His body was recovered some days later.
The men were not wearing lifejackets, and the boat capsized so quickly that they did not have time to put them on before being thrown into the sea. Three lifejackets were recovered, but these were difficult to put on once the men were in the water. The man who drowned had not done up the waist strap on his lifejacket, and it had slipped off.

None of the party had made a clear plan with anyone on shore about what time they should be expected to return. The partners of two of the men had simply assumed the men had decided to stay at each other’s houses overnight, and were not at all concerned until the morning. Letting someone responsible know where you’re going and when you intend to be back will mean that action is taken if you are overdue.

The men fired a flare, which had been seen from shore, but no one took any action. All flare sightings should be responded to as though they indicate a real emergency. It is far better to raise the alarm, even if this turns out to be in error. It is not known whether those on board the nearby yacht also saw the men’s flare.

The boat had a boarding platform that extended aft of the hull from the bottom of the transom. When brought to a sudden stop, most vessels like this will be impacted by their own wake on the transom. In this case, the boarding platform may also have dug the stern into the water, providing an easy path for the water to flow into the vessel. The flooding waters then quickly capsized it.

This tragedy highlights the importance of preparing for a sudden emergency. In many cases, there is no time to put on lifejackets or grab emergency communications equipment. MNZ recommends wearing lifejackets at all times and carrying two effective means of communication that will work when wet. A distress beacon or waterproof handheld VHF carried in a pocket or float-free grab bag would have enabled the men to alert emergency services.
Alcohol and water don’t mix

Alcohol and water don’t mix

BOATING AND ALCOHOL CAN BE A DEADLY COMBINATION

Alcohol, even in small quantities, affects your coordination and judgement, and exaggerates confidence. It can also reduce your ability to perform tasks, impair your sense of direction, and cause unsteadiness.

Alcohol also affects your ability to react when something goes wrong, and its effects are exaggerated on and in the water.

Consumption of alcohol may:
- impair your ability to react if something goes wrong
- increase the likelihood of you ending up in the water by accident
- change the way your body reacts when you enter the water
- decrease your body’s ability to respond effectively once you are in the water, through confusion and lack of coordination.

IT DOESN’T TAKE MUCH ALCOHOL OR TIME…

Alcohol is absorbed directly into the blood stream and its effects are usually apparent within minutes. Even moderate drinking can seriously impair your ability to operate a boat safely.

Drinking alcohol faster than your body can process it will increase blood alcohol levels. Alcohol is burned off at a fairly constant rate – at about one standard drink per hour. Consumption of any amount of alcohol may be dangerous, but the higher the resulting blood alcohol level, the greater the danger. Alcohol affects people differently and reactions will vary, depending on factors such as the type of alcohol you have consumed, and your body weight, food consumption, medication, stress and fatigue.

No matter what the activity, alcohol affects balance, vision, coordination and judgement. In boating, factors like wind, sun, noise, motion and vibration can magnify the effects of alcohol and accelerate impairment.

A momentary lapse that might pass unnoticed on shore can have dangerous consequences out on the water.

YOU’RE THE SKIPPER, YOU’RE RESPONSIBLE

As a skipper, you’re responsible for the safety and wellbeing of everyone on board your boat. A responsible skipper will never operate under the influence of alcohol or allow an intoxicated person to operate their boat.

Operating a boat is at least as complicated as driving a car, and a boating accident can be just as lethal as a road accident. Many people who would never drive drunk think it’s safe to operate their boat after drinking. It isn’t.

You can be prosecuted for operating a boat in a manner that causes unnecessary danger, under section 65 of the Maritime Transport Act.

Avoid or limit alcohol – moderation and common sense should dictate how much alcohol is consumed on your boat. Limit consumption to one standard drink (or less) per hour. It’s better to wait until you’re anchored for the day before enjoying alcoholic beverages on board, and even then, you should limit intake. The best policy is to wait until you’re on dry land.

MAKE SURE YOU DON’T GO OVERBOARD IF YOU’RE TAKING A LEAK

There have been a number of cases in recent years where experienced mariners have fallen overboard while urinating off the side and drowned (especially at night). Be careful where and how you go.

THERE’S NO SUCH THING AS ‘OFF THE CLOCK’ ON A BOAT OR SHIP

Mariners on board a vessel should always be capable of performing any tasks required of them. This is particularly important on a ship, where an emergency requiring action by the crew may arise at any time.

IF YOU’RE ON BOARD, YOU NEED TO BE PREPARED

If you’re on board a boat and intoxicated, you are a danger to yourself and put others at risk. Parents supervising children need to be particularly alert while on the water.

If you end up in the water…

If you’ve been drinking, the risks escalate greatly the moment you end up in the water. Alcohol will:
- decrease your coordination and ability to perform a simple task, such as putting on a lifejacket
- increase your sense of disorientation
- make it harder for you to stay afloat
- lower concentrations of blood going to your brain and muscles, contributing to muscle, heat and fluid loss
- reduce your ability to hold your breath
- suppress your airway protection reflexes and make it easier for you to inhale water
- give you a false sense of your situation, causing you to attempt tasks beyond your abilities
- reduce your awareness of the onset of hypothermia.

Avoid alcohol
Some of the alcohol-related stories we’ve covered in LOOKOUT! over the years...

Issue 23, December 2011

Inflatable’s propeller strikes fun-seeker

After drinking at a work party excursion, a man and a workmate were towed out to the waiting motor vessel on an inflatable. The man received serious lacerations to his leg after a wave struck the inflatable and he let go of it, with the inflatable then riding over his body. Alcohol impairs coordination, judgement and decision making, along with people’s ability to react when something goes wrong.

Issue 22, September 2011

As though daddy were still here

A father away on a weekend fishing trip with the guys set off in a kayak to check the nets in the early hours of the morning and never returned. He’d been drinking most of the evening with his mates and stayed up after they’d gone to bed. He’d been a competitive kayaker in his younger days and was last seen at 3.30am before he headed out to check the nets. When his body was recovered, the post-mortem found high blood alcohol levels. He hadn’t been wearing a lifejacket. “A survivor story.

Issue 22, September 2011

PWC kills joyriding teenager

A teenager was one of a group joyriding on PWCs (personal water craft) after drinking alcohol. The group were travelling at speeds and playing ‘whipping’ games, making sharp turns close to each other to spray water over the other PWCs. One of the passengers, who was not wearing a lifejacket, fell off the PWC. He was run over by a PWC following immediately behind, which had no chance to swerve away. He disappeared under the water and was not found for four days.

Issue 19, December 2010

High-risk trip ends in death

A lodge worker crossed an inlet in an inflatable dinghy in driving rain after a night of drinking and socialising. The man knew the route well, but his friends tried to dissuade him from his trip due to his state and the conditions. He had worn a lifejacket on the trip there, but was not wearing one when he set off. It appears that he failed to make a turn and hit his head on the centre console after the vessel struck the seabed and stopped suddenly. His body was found the next afternoon.

Issue 19, December 2010

Alcohol, cannabis and cold can kill

A man drowned in the cold waters of a marina after spending the evening drinking at a nearby bar and then attempting to transfer from his dinghy to his yacht. He was alone, in the dark, without a lifejacket and had consumed alcohol and cannabis in the course of the evening. Cold water, alcohol, cannabis and failure to wear a lifejacket were all found to be factors in his death.

Issue 17, June 2010

Fatal capsize on fishing trip

One man died and his companion swam to safety after their kayak took on water and capsized. The two men had been fishing and drinking in moderate seas. Because they were both facing forward, they didn’t notice the waves breaking over the stern and into the open aft hatch. The kayak capsized and both men ended up in the water without lifejackets. One man swam to safety, but the other drowned. Alcohol would have affected their situational awareness, ability to cope when they capsized and survival time in the water.

“Even moderate drinking can seriously impair your ability to operate a boat safely.”
Horseplay ends in drowning

On the way back to shore after a night drinking and fishing, a heavily intoxicated man rocked the dinghy from side to side as a joke, alarming his companion. The rocking allowed water to slop in over the sides and swamp the dinghy. The men were not wearing lifejackets. One man made it to shore, using a chilly bin for flotation, but the man who had swamped the boat drowned trying to make his way to shore. The men were heavily intoxicated, in an undersized poorly-maintained vessel and carried no lifejackets and no way to call for help.

Alcohol involved in man overboard

A man drowned early on New Year’s morning after an evening of drinking and celebrating with friends. He was on board a motor launch after a night out at a yacht club with his wife and three others. His wife was woken about two hours later by the sound of bottles rattling at the stern of the vessel and assumed it was the sound of her husband going to the toilet. When she went to check on him about five minutes later, he was not on board or visible by torch in the surrounding waters. His body was found almost two hours later, close to shore in about one metre of water. The man’s recovered body showed a blood alcohol level of almost five times the legal driving limit.

Alcohol contributes to drowning

A fisherman drowned after falling out of a dinghy about 100 metres from shore. His blood alcohol was more than twice the legal limit for driving and he wasn’t wearing a lifejacket. The man toppled into the sea while hauling in a net, and drowned after 40 minutes in the water. Alcohol affects judgement and reduces the ability to balance. It also causes the body to cool more rapidly, with loss of muscle strength and risk of drowning soon after immersion.

Losing to booze

A skipper had his inshore launch master certificate revoked after he grounded in shallows with two passengers on board. The passengers witnessed the skipper drinking alcohol both before and after the vessel grounded, and said he had been behaving strangely throughout the trip. This was not the first time the skipper’s drinking had caused a problem. His certificate had previously been suspended as the result of a conviction under the Misuse of Drugs Act 1975.

Key Safety Messages

- Check the marine weather forecast
- Take two forms of waterproof communication equipment
- Wear your lifejacket
- Avoid alcohol

Issue 15, December 2009

Issue 8, March 2008

Issue 4, April 2007

Issue 3, December 2006

Issue 2, July 2006

Booze + boat + bad weather = death

An engineer drowned after a failed leap from a dinghy to the side ‘sea door’ of a fishing vessel in an exposed inlet. He’d been ashore drinking heavily with the skipper and they were making their way back to the vessel in an oar-propelled dinghy in choppy seas, without lifejackets or any means of communicating distress. He’d ignored the skipper’s earlier instructions to remain seated until the dinghy was fully alongside, and leapt for the fishing vessel’s open sea door. He missed, but managed to cling briefly to the bulwark before tumbling into the sea and drifting astern of the vessel. The crew on board the vessel twice threw a lifebuoy in the engineer’s direction, but he was unable to grasp it.
Exhausted kayaker drowns

A kayaker struggled in vain to reach her companion after he was tipped out of his kayak by a wave.

The pair had only minimal kayaking experience, but both were confident on the water. They had decided to take a kayak trip to a nearby island for a picnic lunch. The trip took about 40 minutes, and once at the island, the pair spent another hour having lunch and resting before setting off for home.

On the way back, the wind had picked up and the going was tougher. About halfway to shore one kayaker fell out and cried out to her companion, who was about 20 metres ahead. As he turned towards her, he was also tipped out by a wave.

Once in the water, the man let go of his kayak to pull off his backpack. Immediately, the kayak drifted away out of reach. His companion was still in the water and started swimming towards him, towing her kayak behind her.

After about 15 minutes, she still had not reached him and climbed back into her kayak. When she leaned over to pick her paddle up out of the water, she fell back into the sea and again tried swimming towards her friend, with the kayak in tow.

About 15 minutes later, the pair were still some metres apart. The woman climbed back on board her kayak and started sculling with her hands to try to reach her friend, who was by now tiring with the effort of remaining afloat.

He was calling out and raising his hand up in the air to let her know where he was, but as time passed he grew more and more frantic, going under the water frequently.

About 10 minutes later, his calls had stopped and the kayaker could no longer see her friend.

She remained in the area for some time before deciding to try to make it back to shore. Sculling with only her hands and struggling against the waves, she eventually reached shore and raised the alarm.

An extensive sea and air search over two days failed to find the missing kayaker. His kayak eventually washed up on shore, and his backpack and paddle were pulled out of the water.

Neither kayaker wore a lifejacket. They looked for some before leaving home, but when they couldn’t find any, they set off anyway. A lifejacket would have enabled the kayakers to remain afloat in the water without expending a large amount of energy, and would have reduced the tendency to panic.

Lifejackets also increase a person’s ability to survive in cold water. A type 401 lifejacket is designed to hold an unconscious person’s head and face clear of the water.

The pair were not equipped with any means of communication, and had no way of raising the alarm. At a minimum, a cellphone in a sealed plastic bag, carried in a pocket, would have enabled them to call for help from the water. It is recommended that people carry two means of signalling distress that will work when wet.

The planned voyage would have been suitable for novices only in perfect conditions. On the day of the trip it was windy, and so conditions worsened considerably once the kayakers moved beyond the more sheltered inner waters.

See the “Paddle safely” kayaking safety feature in the December 2011 issue of LOOKOUT! for more info.
Spinning out of control

Two women clung to their tandem parasail as it spun around in circles while still tethered to the parasailing boat.

The women were launched together for a tethered parasail flight from a purpose-built parasailing boat. In a parasailing flight, the parasail is released into the air and drawn back in to the boat by winch. The idea was first developed by the German navy in 1918 to tow sailors behind U-boats as observers.

The parasail carrying the two women had been winched into the air, and was being towed along at about 5 knots. When the boat was about 500 metres from shore, the parasail suddenly started to spin in circles and was blown hard out to the port side of the boat, which immediately capsized.

The skipper, winchman and three passengers on the boat – including a five-year-old boy – were thrown into the lake. They were at risk of being struck by the still-spinning propellers until the skipper managed to dive underneath the capsized vessel and stop the outboard motors.

Meanwhile, the parasail had stabilised, and was hanging in mid-air, still tethered to the capsized parasailing boat with both women entangled, but still in their harness.

The skipper, winchman and three passengers on the boat – including a five-year-old boy – were thrown into the lake. They were at risk of being struck by the still-spinning propellers until the skipper managed to dive underneath the capsized vessel and stop the outboard motors.

The owner of the company was loading passengers onto another vessel from the shore when he looked up to see a trail of smoke rising from the distant parasailing boat. He immediately unloaded the passengers and sped to the scene.

The crew and passengers were recovered from the water and the towline to the parasail was cut free. The parasail descended into the lake and the two women were recovered unharmed.

The parasailing company immediately suspended its operations.

“When the boat was about 500 metres from shore, the parasail suddenly started to spin in circles and was blown hard out to the port side of the boat, which immediately capsized.”
The parasail had an airspeed limit of 22 knots, and an optimum speed of 14 knots. At the time of the incident, the winds reached 24 knots, and the vessel was making 5 knots. This gave a combined airspeed of 29 knots, exceeding the parasail's limit.

Excessive airspeed tends to overpower a parasail, forcing it to spill the excess air out to one side or the other. The result is an out-of-control spin. As the parasail was still attached to the vessel, its sudden spin and lurch to the port side almost certainly caused the vessel to capsize.

The women remained in the air for about 10 minutes before being lowered down. They had no injuries.

The operator of this business was a newcomer to the field, which is only informally regulated. He had undergone a total of three days observation of other parasailing businesses in New Zealand and Australia before setting himself up to carry fare-paying passengers. He also trained his own staff, a decision which one experienced operator described as the ‘blind leading the blind’.

As a guide, the New Zealand Parasail Association’s Rules and Standards recommend a minimum of two experienced crew, including a skipper with a minimum of 500 hours or 1,000 flights of logged parasailing operating experience, and a first mate with 25 hours of experience. That experience must be logged in the location where the flights are to take place, under the direct supervision of a qualified parasailer.

The skipper in this case held a local launchmaster qualification and was also a helicopter pilot. His parasailing experience consisted of only 100 hours training with the operator, who was himself inexperienced. Parasailing is a specialised industry. Experience in related fields is not enough.

The operator has since moved the winch and towing points on the parasailing boat, lowered the deck and moved the steering helm from the centre to one side. He has also purchased an adjustable chute and set a passenger weight limit, with no double adult tandems until the crew are more experienced.

The parasailing industry, with assistance from MNZ, has been working to develop robust safety guidelines. These will be recommendatory material under the Health and Safety in Employment Act, and will include training requirements for the skipper and deckhand. Other requirements, under the Maritime Transport Act, are for skippers to have the entry-level local launch operator (LLO) qualification and for the vessel to be in safe ship management.
The watertight door of a 63 metre passenger ship closed with 1,650kg of force onto the body of the ship’s chief engineer.

The chief engineer was killed when he was so badly crushed that he could not breathe, and fell unconscious. He never recovered.

The vessel had been berthed with 27 crew and 46 passengers on board. During the morning, the master announced the crew would be carrying out a fire and emergency drill, which included testing the hydraulically controlled watertight doors.

Early into the drill, the crew noticed that a fire hose connected to a hydrant in the garbage room was hammering. The chief engineer and two crew headed below to the garbage room and began discussing the matter. Meanwhile, the master announced from the bridge that he was about to set the watertight doors that lead to the garbage room to remote-close mode.

The chief engineer continued working on the water hammer problem, and sent one of the crew to check a pump in the engine room. The second crew member then went to radio the master that the fire segment of the drill had been completed.

After he had checked the pump in the engine room, the first crew member turned around and saw that the chief engineer had become trapped in the watertight door. The door had closed onto his back as he had moved sideways through the door.

The first crew member tried to open the door by operating the handle, but the lever was jamming on the chief engineer’s shoulder. He then grabbed a spanner and started trying to unscrew the door handle from its shaft. Although it loosened a little, it was not enough to allow him to open the door.

By now, other crew had arrived, and they managed to release the lower hydraulic ram on the door and push it open to release the engineer.

It is thought that the chief engineer was wedged by the door for about a minute before he was discovered, and that it took a further seven minutes to free him. He was unconscious when the crew brought him up on deck. Although resuscitation efforts by ship paramedics and ambulance staff were successful, he never regained consciousness, and died in hospital after several days on a ventilator.

Watertight door viewed from the engine room side.
Crash ends thrilling ride

Several passengers on board a jet boat thrill ride ended up spending the rest of the afternoon in hospital when the boat crashed into a rock face.

The river-based ride was one of many carried out that day in a well-known jet boating adventure tourism area. Drivers had noticed that the river’s water levels had been dropping over the few preceding days, and a sand bank had appeared next to one of the trip’s main thrill features.

Drivers typically used this large bare rock face to delight passengers with a ‘turn-in, turn-out, turn-on manoeuvre’ in which the boat seems to be heading straight for the rock face, but slides past just in the nick of time. In fact, the risk is merely perceived, as the boat remains well clear when the manoeuvre is properly executed.

The driver was suitably qualified and experienced to carry out the trip, but he was the company’s least experienced driver. It had been noted in the company’s river diary for that day that the water was “Good. Thin in the middle! Watch bar”. The falling water level meant that drivers had three options. They could take the boat into the thin channel of water between the sand bar and the river bank to reach the thrill rock face, drive around the outside of the bar, or opt to leave out the rock face part of the trip.

The driver decided to avoid the narrow channel, and drove the jet boat loaded with 14 passengers around the outside of the sandbar before heading back towards the rock face and attempting the turn-in, turn-out, turn-on manoeuvre.

The change in position on the river altered the driver’s angle of approach. He misjudged the manoeuvre and, instead of sliding sideways clear of the rock face, the jet boat’s stern crashed into it. The impact caused significant damage to the stern, and all but two of the passengers suffered injuries, including whiplash, back pain, headache, cuts, sprains and bruises. Five passengers were admitted to hospital. The driver was unharmed.

Some of the damage to the stern of the jet boat.

Below: The accident scene, looking downstream.

LOOKOUT!POINTS

- Normally, the river was largely unchanging, and the company trained its drivers to carry out specific manoeuvres at set points along the route, rather than focusing on a skill base, which they could apply at their own discretion. As a result, although the driver was qualified, he was experienced in the river only as it usually presented.

- The sand bar changed the vessel’s angle of approach, and although he had made two successful trips earlier that day, this time he was caught out. A balance should be sought between adherence to a trip plan and ensuring drivers have the ability to cope with change.

- The company policy was that a driver in any doubt about carrying out a manoeuvre should leave it out. The driver would have been fully at liberty not to attempt this thrill manoeuvre.

- Adventure tourism operators should bear in mind that although they may be making the same trip several times a day, even being in a jet boat is usually an exciting experience for a passenger.
Total recreational fatalities for the period 2002–2011 are almost two and a half times the total for commercial fatalities (161 recreational fatalities, compared with 66 commercial fatalities). The recreational fleet, however, at around 500,000 vessels is more than 100 times bigger than the commercial fleet of about 4,400 vessels.

There were 20 recreational fatalities in 2011, the third-highest number of fatalities in the past 10 years, with 24 recorded in 2009 and 21 in 2002. The lowest number of fatalities for the period, seven, was recorded in 2006.

For each of the past five years, at least three recreational fatalities have involved dinghies. In 2009, there were nine recreational fatalities involving dinghies. There were four kayak fatalities in both 2011 and 2010 and six trailer powerboat fatalities in 2011.

In the decade 2002–2011, annual fatalities in the commercial sector ranged between three and 11. Neither the fatality rate nor the accident rate in the commercial sector has shown any consistent improvement in the period.

In the commercial sector, there has been at least one fatality in the fishing and foreign SOLAS categories in each of the past five years. However, the total number of fatalities for the fishing sector (12) is double that for the foreign SOLAS category over the period.
ACCIDENT STATISTICS

» Commercial serious harm injuries by vessel type

Serious harm by commercial vessel type, 2011

Serious harm by recreational vessel type, 2011

LOOKOUT! MARCH 2012
News & updates

New-look website coming soon

We’ve been working on a new design for the MNZ website, which we aim to roll out later this year. Landing and information pages will be fine-tuned to suit more of our growing target audiences, and the different layers of information that sit under these will be easier to navigate. Alongside the new design will be a better search function, so you’ll be able to find what you’re looking for more easily.

There will also be a media centre, so when there’s a major incident or search and rescue, information about the incident, images and relevant background information and statistics will be easy to find and in one place. The major incident mode that we’ve been using for the past two years will still feature. This has been used very successfully during the *Rena* grounding.

Down the track, we’ll be adding more online services and looking at which services we can offer in a format tailored for mobile phone use. Online accident reporting, media releases and safety updates will be first in line for mobile treatment.

Maritime fatalities 2011

From 1 January to 31 December 2011 there were 23 fatalities – 3 in the commercial sector and 20 in the recreational sector.

This compares with 9 commercial and 14 recreational fatalities in 2010.