Lucky escape, boat dashed on rocks

Inside page 2
Lucky escape when boat dashed on rocks

A toddler was among a family of four who had a lucky escape shortly before their boat was dashed to pieces on rocks.

The group was not wearing lifejackets, and there were none onboard, when the motor of their recently purchased pleasure boat seized while out fishing on a popular river late one afternoon. The vessel had begun floating toward a notorious bar on the river, when the father of the youngster got out the oars. He started rowing the small craft toward rocks where, despite the swells, the four were able to clamber ashore.

The light craft, bought three days before from the roadside and not tested or serviced, began to disintegrate as the swells smashed it onto the rocks. It had to be abandoned, and a large part of the hull was quickly washed down river, where it ended up on a coastal beach.

Fortunately for the family, emergency services personnel returned them safely to their car near the boat ramp, with a word of warning about safe boating practices.

The skipper put his family at risk using an untested light craft, without lifejackets. Fortunately he had oars on board and was able to use these to get to safety when the motor seized. Otherwise there could easily have been a fatality.

Lifejackets are a legal requirement. You must carry a correctly sized, serviceable lifejacket for each person on board a recreational boat in New Zealand. This rule applies to all boats, including tenders and larger craft.

When buying a boat, ask the owner to take you out for a sea trial in the vessel. If you are new to boating, consider taking along someone who is an experienced and knowledgeable boater who can advise you whether the vessel is safe and whether it is suitable for the purpose you want to use it – diving, fishing, etc. Check the vessel is also suitable for the local sea conditions.

Make sure you know how to operate the vessel, where the safety equipment is (including bungs), how to operate the VHF radio, or where there is dry storage for flares etc in the event of an emergency.

Check the service record of the engine before setting out, and if necessary ensure it is fully serviced to prepare, as thoroughly as possible, for safe boating.

For more information go to:
Beacon aids paddlers

A decision by six waka ama paddlers to take along some extra kit may have helped them avoid a potentially deadly situation.

The crew was preparing to set out for a routine after-work paddle offshore from a city coastline. It was standard practice for them to meet up, discuss the weather and other safety concerns, check the kit in their canoe, and set off for a quick jaunt that would have them safely ashore again before nightfall.

On finding their VHF hand-held radio missing from the club stores, a visitor who had joined the crew – who works as a commercial fisherman – decided to take along a cellphone in a waterproof plastic bag, as well as a club personal locator beacon (PLB) which had been left in a club lifejacket.

When activated, these small transmitting devices broadcast their owner’s location on the 406 MHz international distress frequency. The signals from New Zealand-registered PLBs are picked up by the Rescue Coordination Centre New Zealand (RCCNZ), which then coordinates the search and rescue response.

The conditions were marginal, and not long after the crew left the port’s breakwater and paddled up the coast, the wind and swells began to build. Before long the swells were reaching five metres or more, the temperature had dropped and winds were gusting above 30 knots, in fading light. The crew decided to head back to the port but, before they could turn the canoe around, a large wave swamped it and knocked the paddlers into the water. Paddles were torn from hands and plastic bailers washed overboard.

The strong wind and big swells prevented the crew from following their usual procedure of using the outrigger as leverage to tip the vessel and empty out the water, before righting it and reboarding. They found it increasingly difficult to regain control and get the bow pointed out of the wind in the direction they needed to go. With swells continuing to swamp the boat, the paddlers began to feel the effects of fatigue and cold water, made worse by the chilling winds. The crew member with the cell phone called port authorities, but the noise of the wind blowing into the phone prevented him from being understood clearly.

Finally, with conditions showing no sign of easing and early indications of hypothermia in some crew members, it was decided to activate the PLB.

RCCNZ picked up the beacon’s signal and its search and rescue coordinators were immediately aware that someone was in danger in the area where the signal was transmitting from. First responders from the port, NZ Police, the Fire Service and St Johns Ambulance were directed to the port entrance. A commercial vessel joined the response, along with members of the waka ama club, who briefed responders about the craft and the paddlers’ identities.

While the rescue effort was getting underway onshore, out on the water one of the waka ama crew managed to pull the canoe’s bow away from the wind and into the right homeward direction, and the paddlers began the long slog back to the port. As they approached the port marker, the deepening twilight and high swells were making it difficult for the crew to fix their position. Just at the right time, the stern deck of the commercial vessel was lit up, giving them enough illumination to take a bearing and continue towards the beach. Finally, more than hour after they’d planned to return, the exhausted crew landed their canoe under their own power.

Emergency services assessed the paddlers and transferred them to hospital, where they were treated and observed for signs of hypothermia before being released the same evening.

Other waka ama crews in action.

POINTS

- New Zealand weather can be highly unpredictable. It is important to check the most up-to-date version of the Swellmap forecast if planning a coast paddle.
- The crew were surprised by the rapid changes in weather and sea state. In the event, their decision to carry extra communications was well founded. Had they gone out to sea without them, they would have had no way to call for help in the unexpectedly rough and deteriorating conditions.
- All recreational boaties are recommended to carry two reliable waterproof ways to call for help in an emergency, even when they don’t consider there is a risk, and this incident highlights the value of that advice.
- It is important to call for help when it is clear that safety is at risk. RCCNZ was quickly able to alert rescue responders in the area. The paddlers not been able to turn their vessel back in the return direction, some crew members could have become seriously affected by hypothermia and less able to stay upright or afloat before help arrived. The crew could also have ended up trying to paddle back to the port in darkness, without having lights to take their bearings from, and without rescuers knowing where to look for them.
- Following this incident, the waka ama club has reviewed its overall safety procedures and is providing additional member training in handling swamping and winter conditions as well as upgrading its radios and equipment. Individual waka ama crews are now more aware of already existing club policy regarding the need to carry two separate waterproof ways of calling for help; and are choosing to wear warmer kit such as thermals or wetsuits for winter paddling. Daylight safety margins have been increased to minimise risk.

For more information go to:
WHEN THE SHIP HITS THE FAN YOU BETTER BE BAGGED

For more safety stuff, search boatsafetyinnz on youtube.

Do tell, what's the point of having the fanciest super-techno comms device if you can't use it? Exactly. That's why I bag up the celly, every time. It keeps the water out and the ladies on speed-dial, in the boat or out. Truth. Fact is campadre, if you can't make the call when things get ugly, no one's coming to the rescue.

MAKE THE CALL. BAG IT UP.

For more safety stuff, search boatsafetyinnz on youtube.
A stevedore suffered serious injuries after falling 15 metres from the deck of a ship, hitting a crane and the wharf before landing in the water.

The man was attempting to dislodge a twist-lock of a container, at the top of a two-container stack, so that the wharf crane could lift the containers.

He was using a “three high” unlocking pole approximately 5 metres long and successfully dislodged the twist-lock, but it remained on top of the container.

He then used the unlocking pole to lift the twist-lock, intending to swing the pole inboard and drop it on the ship’s deck, but the weight of the twist-lock began to force the pole down towards the side of the ship. The stevedore tried to stop this, afraid that the lock would hit people on the wharf below.

But the weight was too great and he was thrown from the ship when the pole pivoted on the ship’s side.

The stevedore spent around 15 minutes in the water, because he fell into narrow space and it was difficult to get him out. He was kept afloat by two life-buoys, which had been thrown to him.

He was eventually brought to safety, after a cage carrying several rescuers was lowered into the water until it was partially submerged, and he was floated gently into it.

He remained conscious but was seriously injured, with two broken legs, three fractured vertebrae, 10 fractured ribs, sternum fractures in two places, a lacerated lung, and two fractured tendons in his left hand.

The man remained hospitalised for more than three months after the accident and continues to receive treatment for his injuries. He requires further surgery as a result of his injuries, and is unlikely to be able to return to work as a stevedore.

A safety rail should have been in place in the area the man was working.

At the time the ship was signed off as safe for work, the safety rail was not up. There was lashing gear and bottle screws on top of the safety rail, which would have needed to be moved before the safety rail could be lifted into position.

The ship supervisor could have put the rail up himself, if he was able to, or advised the ship’s crew of the problem and required them to take necessary steps before work began, such as erecting a temporary safety rail to address the risk of falls.

As part of safe work processes, the company required a ship supervisor to ensure each vessel was safe to work on; but there was no formal process for someone to advance to the role of ship supervisor. Training needs to be put in place for people to be appointed in this role.

The port company that employed the stevedores had identified in mid-2013 that use of unlocking poles to remove twist locks was hazardous, but stevedores were not told they should not be used. Identification and notification of hazards to the right people is of paramount importance.

Maritime NZ charged the company under the Health and Safety in Employment Act 1992 of failing to take all practicable steps to ensure the safety of an employee.

The company admitted the charge and was fined $55,000 and ordered to pay $25,000 in reparation to the stevedore. This shows failure to take safety precautions can cost a company more in respect to reputation, fines and reparation, than investing in safe outcomes in the first place.
Poor choices lead to tragedy

A young man died from cold-water immersion and two others were lucky to survive when the 4.6 metre boat they were on filled with water and rapidly sank in a South Island lake.

The Coroner has found that the sinking occurred when the auxiliary motor, under power, pulled the bracket it was attached to off the rear of the boat, creating hull failure with a hole in the transom. A Yamaha 25 HP outboard motor, weighing 50 kilograms, had been attached to a bracket intended for smaller outboard motors of up to 10 HP.

The man had owned the home-built fibreglass boat for only a few weeks and had little experience of operating or being in boats when he set out on the fishing trip with his friends. As the boat’s 115 horsepower outboard motor wasn’t working, a borrowed 25 HP auxiliary motor had been attached to the rear of the boat and was being used to power it on the lake.

Deciding to cross from the west of the lake to the opposite side, the skipper opened the throttle. The extra load imposed by the propulsion, combined with the weight of the engine on the mounting bracket, resulted in part of the transom tearing off – opening a large gash in the rear of the hull. The boat stopped and began taking on water. The men activated the bilge pump and used a rope to try to pull up the motor and bracket to close the hole, but water continued to pour in and they had no means of bailing it out.

Two of the men not wearing lifejackets quickly put them on as the stern sank lower in the water. There was no radio on board to call for help, and they were well out of cellphone range. Within minutes, the boat was submerged and the men were in the very cold waters of the lake about 600–700 metres from the shore.

After briefly attempting to cling to the bow of the boat, which was still above water, the three companions struck out to try to swim ashore by lying on their backs and kicking.

About 20 minutes later, one man reached land. He then drive to the closest settlement. This meant it was another 90 minutes before he was able to call for help for his friends, who were still in the water.

During this time, a woman walking on a track alongside the lake heard shouting and noticed a boat near the opposite shore. She used the zoom function on her camera to try to work out what was happening, and could see what looked like dots in the water. She made her way to the carpark to try to raise help, but ended up having to drive for 30 kilometres to get cellphone reception before she could phone 111 and report what she thought was a boat sinking in the lake.

A search and rescue operation was immediately launched, with two jetboats and a helicopter dispatched to the lake. The helicopter crew located the boat and a body in the water about 100 metres away. The other man had made it safely ashore.

The Coroner recommended that this boating tragedy be highlighted, along with the clear lessons that can be drawn from the circumstances that resulted in the death of this young man.
Multiple lessons can be learned from this tragedy. There was no reliable way to call for help in an emergency; the skipper was inexperienced and lacked any knowledge about operating a boat safely; and the auxiliary engine being used was too heavy and powerful for the mounting, resulting in damage leading to the sinking.

- Having reliable communications equipment is essential to staying safe on the water. If you get into trouble and can’t call for help, nobody can rescue you. In this case, being able to raise the alarm quickly could have been a life saver, because the water was extremely cold – estimated to be about 7 degrees Celsius – and in these kinds of temperatures, a person is unlikely to survive for long.

The men were out of cellphone range, and although the boat had flares on board, the incident happened too quickly and unexpectedly for the men to reach them and set them off before the boat sank.

On small vessels, you should carry waterproof communications equipment either on yourself or in a float-free bag. In this case, the men had no way of requesting assistance or alerting emergency services, apart from trying to swim to shore. They needed to have had at least two waterproof means of calling for help that would work in the area where they were boating, such as a distress beacon or waterproof handheld VHF radio carried in a pocket or float-free bag.

- This could easily have been a triple fatality, had the men not had lifejackets. The two men who survived were fortunate to have had the chance to put on lifejackets – too often when disaster strikes without warning on the water, there is little or no time to put on and securely fasten a lifejacket before ending up in the water, and this can mean the difference between survival and death.

Wearing a lifejacket is the most basic boating safety measure. Maritime NZ and other water safety agencies recommend that all people on recreational boats up to 6 metres in overall length wear a properly fitting lifejacket at all times while underway. Then, if for any reason someone ends up in the water, they have a greater likelihood of being supported long enough to be rescued.

- Even with a lifejacket, sudden cold-water immersion imposes huge stress on the body and dramatically reduces the time that a person is likely to survive. The deceased man was not a strong swimmer and may have panicked when he landed in the water, which means he could have used up valuable energy in the first minutes and depleted any reserves he might have been able to call on while attempting to swim the 600–700 metre distance to shore.

- It is the responsibility of owners and skippers to make sure their vessel is seaworthy. They need to ensure their vessels are properly maintained and suitable for the boating activity they’re undertaking.

The skipper had owned his boat for only a few weeks and had no boating experience. He’d borrowed the 25HP auxiliary outboard motor, which weighed about 50 kilograms, for the day because the engine fitted to the boat wasn’t working. He mounted the motor to a bracket that was only rated for an auxiliary motor with a maximum of 10HP, without considering how the extra power might affect the ability of the boat to be operated safely.

The boat sank as a result of hull failure, when the transom broke off around the auxiliary outboard motor bracket while the boat was being operated. It is likely the weight of the engine and the extra load caused by the propulsion caused the transom to tear off.

The fibreglass hull, especially the transom area, was strong enough for the main engine and a small auxiliary engine on the bracket, but it was not strong enough for the bigger engine that was used that day.

For more information go to: http://www.maritimenz.govt.nz/Recreational-Boating/Lifejackets/Survive-in-cold-water.asp
Freak accident costs a man’s fingers and livelihood

A young man lost fingers from both of his hands in a serious harm incident while working on board a fishing vessel at sea.

The accident occurred after the owner/skipper and his single crewman had hauled the first trawl. They had shot the trawl gear and, at the 400 metres mark, the warp wire caught underneath a shackle, so the skipper kicked it free causing the shackle to break. The skipper then tied two ropes to the aft wire to release pressure off the shackle, using a process known in the industry as “stopping”.

They then replaced the broken shackle and started winching loose wire onto the drum. The loose wire had kinked several times and the crew member was unkinking it as the skipper was winding it on. Suddenly the stopping ropes broke and the warp wire closed on the crewman’s hands.

The skipper, realising what had happened, went into the wheelhouse and pulled the boat out of gear to release the weight from the wire. He untangled the man’s badly damaged fingers from the wire, lay him down on a bunk and gave him painkillers, then called for Police to despatch a rescue helicopter.

Once he’d pulled up the trawl gear, the skipper steamed to a bay to rendezvous with the helicopter, which airlifted the injured man to hospital. The man lost all of the fingers except for the thumb on his right hand, and the tips of three fingers on his left hand.
This accident resulted in serious injuries and permanent disability. The man was not a novice, having had previous experience on other vessels, and there were no other contributing factors such as fatigue, pressure, drugs or alcohol. The accident has serious long-term implications for the young man’s career, as it is unlikely that he will be able to work on the deck of a trawler again.

An unfortunate combination of factors was considered likely to have caused it, rather than a single isolated event. It is considered unlikely these circumstances would align again in the future and cause another such accident.

When he was winding the trawl gear in, the skipper found that the net had snagged on the bottom, which is probably what caused the rope to break and set off the chain of events that led to the accident.

The men’s actions and the conditions leading up to the accident were consistent with standard industry practices. However, while the use of shackles and rope is relatively common, hammer locks (a type of wire rope or chain connector) are stronger than shackles, and chain is considered better than rope for “stopping”. There is probably no other practical way to remove kinks from wire rope than to untwist it by hand.
The benefit of MOSS is that it encompasses an operator’s whole operation. It’s your plan, and you are telling Maritime New Zealand what you do. If you know your operation, it’s a really simple matter.

Nathan O’Hearn
Co-host of Big Angry Fish, Bay of Plenty/Waikato

Congratulations to Big Angry Fish – leading fishing operators into MOSS

“The benefit of MOSS is that it encompasses an operator’s whole operation. It’s your plan, and you are telling Maritime New Zealand what you do. If you know your operation, it’s a really simple matter.”

Nathan O’Hearn
Co-host of Big Angry Fish, Bay of Plenty/Waikato

Book your FREE visit and get expert advice from your local maritime officer

For MOSS guidance and info, go to www.maritimenz.govt.nz/MOSS

You can email your queries to operators@maritimenz.govt.nz

newzealand.govt.nz
Lack of safety costs lives

An unseaworthy vessel that was overloaded has been ruled as contributing to the drowning of a man and his young son while out for a test run on a city harbour.

Alcohol was also a contributing factor, along with the lack of any lifejackets for the man, in his mid 40s, and four children on-board the 3.5 metre aluminum dinghy.

The Coroner has found that both drownings were avoidable, and has concluded that four out of the five safety factors identified by Maritime New Zealand, as being important for safe boating, were not observed by the skipper.

The five key messages spread through safety campaigns for the estimated 900,000 pleasure craft operating in New Zealand are:

- Wear lifejackets
- Avoid alcohol
- Check the seaworthiness of your vessel
- Check the weather forecast
- Carry two means of emergency communication that are kept dry, or work when wet

Conditions were windy when the man launched the dinghy at a boat ramp, with four young members of his family, aged 2-10.

The boat had been recently purchased by his wife, and did not have a bung plug. The previous owner swapped in a bung plug from another vessel when using it. Buoyancy tanks were under the seats, that were constructed at gunwale level, making the dinghy unstable and likely to capsize.

Witnesses could see the boat appeared overloaded – the man was at the stern controlling the motor, and the children at the bow – with only a small amount of the vessel’s sides above the waterline.

The skipper had done a U-turn and was heading back when a witness heard children yelling for help as the boat began to sink. Not far from the jetty the skipper got up to get the tackle box and capsized the boat, which sank very quickly.

The five occupants were pulled away from shore by the outgoing current, with several of them struggling to hold the toddler above water level. Three of the children, including the two-year-old, were rescued by members of the public and emergency staff.

The bodies of the father and one son were later recovered from the harbour by the Police National Dive Squad. A post-mortem examination indicated the man had a blood alcohol level of at least twice the former limit for driving a motor vehicle of 80mg/100ml of blood.

This avoidable boating tragedy highlights the dangers of mixing alcohol and boating. Alcohol gives people a false sense of their situation. While the skipper should have checked the boat’s seaworthiness before taking a trip, he might have assessed the situation on the day more accurately if he had not been under the influence of alcohol.

Alcohol may have also resulted in the skipper having reduced coordination and balance, which, along with the unstable nature of the vessel, resulted in the boat capsizing.

Testing a vessel’s seaworthiness before leaving the shoreline is vitally important. The position of the buoyancy tanks meant this boat was unstable, and the engine was in poor condition. The purchaser and skipper did not realize the dinghy was missing its bung, which directly contributed to the capsizing as the boat was gradually sinking and becoming even more unstable.

These fatalities show how imperative it is to wear lifejackets. If all the occupants had been wearing lifejackets two fatalities might have been prevented. In this case, the lack of lifejackets put at risk the lives of the occupants, as well as increasing the risk for the members of the public who immediately got into the harbour to swim to their rescue.

Understanding New Zealand conditions – including harbour currents, and wind patterns and strengths – is a prerequisite to safe boating for recreational boaters and fishermen; whose main experience may be from other environments/countries.